PlayStation Emulation on the Pi: Enhancing the Experience with the Options Menu – Part One: Basic Features and Save States

The Libretro Options Menu – the Key to Enhanced PlayStation Emulation

PlayStation. Rage Racer, In Game. Standard Resolution - Smoothed
Libretro Menu - Core Options submenu
PlayStation. Rage Racer, In Game. Enhanced Resolution - Smoothed

 

This post builds upon the information in the preceeding article entitled RetroPie Emulation: RetroArch, Libretro, and the Power of the Options Menu.

Edit: This post has been extended to account for differences in RetroPie 3.6’s version of RetroArch/Libretro. The PlayStation emulator remains the same in both the 2.x and 3.x RetroPie revisions (Pcsx-ReARMed r22). The original post was based on RetroPie 2.x

Topics Covered In Part 1

PlayStation Emulation on PiPlay and RetroPie

As noted in the aforementioned post, before discovering RetroPie I’d been running PiPlay on the Raspberry Pi 2, which provides a broadly similar emulation platform to RetroPie. Whilst the graphical emulator selection front-end is different to Emulation Station, many of the same emulators are in place; however all is not as simple as it appears.

Unfortunately, with the build of PiPlay I was using I ran into problems with various emulators; virtually all Megadrive / Genesis games I tried had corrupted sound, many would freeze at random, and there was no support at all for the 32X. The PlayStation emulator initially appeared to be excellent, however as I tried more titles I uncovered a number of shortcomings; I’m planning a future post on this topic, as the same emulator in RetroPie has a few different issues, and I became obsessed with understanding the problems in a bid to have the best of both worlds.

PiPlay Emulator Selection Menu
PiPlay Emulator – Main Menu
Emulation Station - Main Menu - PlayStation Focused
Emulation Station – Main Menu

I should note that, being impatient to see if the Raspberry Pi was a solid emulation platform, I quickly switched to RetroPie and have not subsequently installed any newer PiPlay images; nonetheless the PiPlay distribution has many sound ideas, and is definitely worth further investigation.

One core feature which the PiPlay incarnation of the PlayStation emulator has is a comprehensive in-built options menu, accessed via the Escape key. This allows access to various settings, affecting the graphical and audio output, save states, controllers, and more. The following screen grabs show the native menu being accessed whilst a title is running:

PiPlay PCSX ReARMed Native Menu - Advanced
PiPlay PCSX ReARMed Native Menu – Advanced
PiPlay PCSX ReARMed Native Menu - Controls
PiPlay PCSX ReARMed Native Menu – Controls

Coming to the RetroPie version of the same emulator, I was surprised to find that this menu no longer existed; at the time I had no knowledge of the unified environment shared by Libretro-enabled emulators, but found various references to the ‘core menu’ in forums. As I was to discover, and as detailed in the preceding post, RetroPie’s PlayStation emulator implements the standard Libretro menu system.

Note: the terms Libretro menu and RetroArch menu appear to be used as synonyms in documentation and in forum posts.

Continue reading

RetroPie Emulation: RetroArch, Libretro, and the Power of the Options Menu

What is the Libretro Options Menu, and Why Does It Matter?

consoles and home computers
RetroArch Menu - Welcome Screen
RetroArch logo

For a while after installing RetroPie, this question plagued me. I found references to the ‘Options Menu’ seemingly everywhere, but as to where it resided or how it manifested, that seemed some closely guarded secret.

Why was I looking for the elusive menu? Well, the Options Menu holds the secret to really getting the most out of many of the RetroPie emulators, from tweaking the controller settings to switching graphics rendering engines.

In my earlier post ‘What is RetroPie? System overview, software and hardware’ I provided a brief description of RetroPie, which contains numerous home computer and console emulators, up to and including the N64. As noted in that post:

RetroPie can be thought of as a framework which wraps and extends other software components, ultimately handling the loading of a selected game image into the relevant video game emulator.

image
Libretro Logo

Many of the console emulators included in RetroPie are what are known as Libretro cores; these ‘cores’ are existing emulators, modified to utilise the Libretro API, which provides a common interface and experience across multiple systems:

Again, from the aforementioned earlier post:

The system also provisions management and configuration of numerous elements, including:

  • Loading button and axis (analog) control maps, matching upon detected Usb controller(s)
  • Setting video resolution
  • Applying filtering and video overlay effects
  • Providing state management (providing loading and saving of in-progress games)

The Libretro page on the emulation-general.wikia.com site describes Libretro in the following terms:

Libretro is an lightweight C/C++ API designed for emulators… It specifies how to write a library, called Libretro core, so that it can be loaded by a frontend supporting Libretro API like RetroArch… Libretro API can be used for example to strip emulator of it’s GUI components and convert it into dynamic library called Libretro core. (sic)

On the Libretro forum, user hunterk expands on the concept of retrofitting an emulator with the Libretro API:

Libretro porting is generally a case of mapping/wrapping the emulator/game/whatever’s internal API to the corresponding libretro functions and/or callbacks. So, many ports are very shallow and require little-to-no modification of the existing core code.

Thus, the RetroArch framework brings a set of consistent features to a broad range of emulators which were written entirely independently. All ‘core’ enabled emulators feature a common menu, the elusive Options Menu, which can be accessed and navigated via keyboard or a suitably configured control pad.

Continue reading

Don’t Fear The Command Line: Raspbian Linux Shell Commands and Tools – Part 1

A Basic Guide to Using Several Handy Linux Command Line / Shell Commands and Tools

Just the Basics

Warped Command Shell. Image - Retro Resolution
Warped Command Shell. Image – Retro Resolution

To customise your Raspberry Pi generally requires a little knowledge of the command shell, even if only running the menu-driven Raspbian configuration tool; the operative word being little.

You don’t need to become a Linux guru to make use of a wide range of handy commands and tools to get the most out of the Raspberry Pi, even when using an all-in-one image such as RetroPie.

You can use the command shell to accomplish tasks including:

  • Obtaining a real-time view of running programmes and processes, including their memory and CPU usage.
  • Monitoring the system hardware, viewing temperature, voltage, and component speed information.
  • Running integrity checks on the filesystem.
  • Moving, copying, and renaming files.
  • Sharing files with other systems on the network, including PC, Mac, and Linux machines, and accessing shared files from those systems.
  • Editing or creating text files, such as those controlling configuration for the Pi’s hardware, and individual programmes.
  • For RetroPie, adding or tailoring configuration to support additional hardware, including USB adaptors allowing the use of original controllers for systems such as the PlayStation, N64, Megadrive/Genesis, and the wireless Xbox 360 pad.
image
Command prompt - Image: pixabay.com

Topics Covered in this Guide

Continue reading

Overclocking and Stability Testing the Raspberry Pi 2 – Part 2: Stability Testing

Stability Testing an Overclocked Raspberry Pi
 

Checking that the system is reliable after applying overclocking

Overclocking is nothing without Stability. Image - www.wallpaper.ge/
Overclocking is nothing without Stability. Image – http://www.wallpaper.ge/

Following on from Part 1 of this post on Overclocking, we turn our attention to stability testing the system; this process is crucial, as simply witnessing the Pi boot to the command shell, or a Graphical User Interface (GUI) isn’t proof that a given combination of overclock settings is stable.

Sometimes an instability will only become apparent after several hours of intensive activity on the system (which is highly likely if using the system for gaming with an installation such as RetroPie).

There are three tools / scripts which I have used in the stability testing processes. For each I will provide instructions on obtaining and installing (or running, as appropriate):

  • MPrime.py
    – Python script to search for prime numbers, which heavily loads the CPU
    – User selectable numeric range to test
    – User selectable number of cores to run upon simultaneously.
  • Memtester
    – Tests the stability of the RAM
    – Natively runs on a single CPU core, but can be run on all cores using multiple remote SSH sessions, or the Screen tool
  • Stability Test Script
    – Reads the entire SD card 10x. Tests RAM and I/O
    – Writes 512 MB test file, 10x.
    – Script can be easily updated to change the number of reads/writes etc.

This post covers the use of mprime. Subsequent posts covers the use of Memtester and the Stability Test Script. Please use the links in the above list to access the relevant information.

Continue reading

Overclocking and Stability Testing the Raspberry Pi 2 – Part 1: Overclocking in Depth

More speed for free?

Silhouette Clockwork - Image Original: andreakihlstedt.com
Silhouette Clockwork – Original Image: andreakihlstedt.com

Overclocking and Stability Testing – Part 1

When using the Raspberry Pi 2 to run any sort of intensive software, which certainly includes emulating classic video games systems using RetroPie, you really need all the processing and graphical horsepower you can get. Luckily there’s more available under the bonnet of the Pi with a little tweaking.

Note: For additional considerations when overclocking the Raspberry Pi 3, please see Overclocking the Raspberry Pi 3: Thermal Limits and Optimising for Single vs Multicore Performance, in addition to the current post.

Topics Covered In Part 1

Topics Covered In Parts 2, 3, and 4

Disclaimer

Overclocking the Pi is supported by tools provided with standard operating system distributions, such as Raspbian, and sanctioned by the manufacturer (with some caveats, as discusssed below). That said, the following details only my own research and experiences with a single Raspberry Pi 2 device; as always, your mileage may vary.

Assistance for those new to Linux

Making changes to the Overclock settings on the Pi, and testing the changes for stability, requires a little knowledge of the Linux command shell.

Please see my related posts for a basic guide which should help those new to Linux and/or Raspbian get started:

Overclocking and Power – Use a Quality PSU

When overclocking it is worth ensuring that your Pi is serviced by a good quality Power Supply Unit (PSU), as this is often a point of failure. Not all micro usb supplies, or cables, are up to the task.

Please see my earlier post covering this topic here.

Why Overclock?

The Raspberry Pi 2, as with the predecessor Pi, can be setup to run faster than the default system, effectively giving extra processing and graphical capabilities for free. For retro gaming this can be critical, and is especially true of the N64 emulators, as well as when running more demanding PlayStation releases such as Gran Turismo 2.

Raspberry Pi System Architecture

The Raspberry Pi 2 contains a System on a Chip (SoC), which integrates a quad-core ARM CPU and a Broadcom VideoCore IV Graphics processing unit (GPU), alongside 1GB of SDRAM memory.

Raspberry Pi 2 Model 2
Raspberry Pi 2

Continue reading

Emulation Station – beneath the covers

What is Emulation Station, and what does it do?

Emulation Station is essentially a launcher for emulators; when RetroPie has been installed, it loads automatically when the Pi is booted, and allows user to select a game from the library, which is loaded into the required emulator.

Please note: the following assumes some familiarity with Linux, the terminal / console, and commands for basic navigation and file editing.

image
Emulation Station logo

A future post will cover core information which may be useful when getting to grips with the Pi at a lower level. Whilst the command line can be daunting if you’re only ever used to GUI systems, you really only need a smattering of commands to manipulate the files necessary for customising a RetroPie installation*

A couple of important questions to address regarding the emulators shown in the Emulation Station User Interface, before looking at the main configuration file:

Q. Why isn’t the Megadrive (Genesis/SNES/PlayStation etc) emulator showing in the list?

A. Emulation Station shows the emulators included in RetroPie in a gallery-style list which the user can scroll left or right, however a large number of the supported emulators are not shown by default. It is necessary to place at least one game ROM/image file in the emulator’s corresponding ROM folder for the emulator entry to appear in the UI.

Emulation Station - Emulator Selection
Emulation Station – Emulator Selection

Continue reading

What is RetroPie? System overview, software and hardware

image
image
image

When I began to assemble my Raspberry Pi-based emulator setup, one of the core issues was simply understanding the elements which comprise the system, namely the hardware and numerous software components which RetroPie relies upon, and which in turn rely upon RetroPie.

Understanding this stack became more crucial once the initial installation was complete, and I subsequently began to explore and customise the system (including setting individual emulator video resolution, display filtering and analog effects, and controller / joypad support).

Firstly, what is RetroPie?

According to petrockblock.com, the home of RetroPie:

“The RetroPie Project is a collection of works that all have the overall goal to turn the Raspberry Pi into a dedicated retro-gaming console.”

RetroPie can be thought of as a framework which wraps and extends other software components, ultimately handling the loading of a selected game image into the relevant video game emulator.

The system also provisions management and configuration of numerous elements, including:

  • Loading button and axis (analog) control maps, matching upon detected Usb controller(s)
  • Setting video resolution
  • Applying filtering and video overlay effects
  • Providing state management (providing loading and saving of in-progress games)

Continue reading

Retro Gaming Emulation on the Raspberry Pi with RetroPie

Where possible I’ll attempt to publish blog posts covering topics in a logical order, progressing through my experiences during the setup of my Raspberry Pi RetroPie installation.

RetroPie Splashscreen
RetroPie Splashscreen

In setting up my installation I have followed a great many of the very useful step-by-step instructions provided elsewhere on the internet; sometimes these answered many questions, but raised others. I often found that I had to go Beyond the Basics, as I’d invariably run into a situation where a step in a chain of instructions didn’t work for me, or I wanted my system to do something which wasn’t directly covered in the guides I was following.

I’m planning that this blog will serve as a reference work for the most part, so that I can keep the notes on what I’ve experienced and learned in a single place, rather than scattered across posts and comments on multiple forums, blogs, and YouTube threads.

I’ll try to produce self-contained posts targeting specific issues (such as configuration of the Pi’s resolution, or the set-up of an Xbox 360 Wireless Controller).

At the time of writing the version of RetroPie I’ve used is 2.6; I’ll be updating to a 3.x build at some stage, but will stick with the older release for now. It’s likely that some (perhaps many) of the issues covered here will be no longer relevant with the ongoing enhancements to RetroPie, however many other topics will still be relevant to older, current (and future) builds.

Related Posts
Links: Raspberry Pi and Gaming Emulation via RetroPie

About
Disclaimers
Privacy Policy
Terms and Conditions
© Retro Resolution